Preparing of Highly Conductive Patterns on Flexible Substrates by Screen Printing of Silver Nanoparticles with Different Size Distribution

نویسندگان

  • Jin Ding
  • Jun Liu
  • Qingyong Tian
  • Zhaohui Wu
  • Weijing Yao
  • Zhigao Dai
  • Li Liu
  • Wei Wu
چکیده

A facile one-step polyol method is employed to synthesize the Ag nanoparticles (NPs) in large scale. The Ag NPs with different average diameter (from 52 to 120 nm) and particle size distribution are prepared by changing the mass ratio of AgNO3 and PVP. Furthermore, the as-obtained Ag NPs are prepared as conductive inks, which could be screen printed on various flexible substrates and formed as conductive patterns after sintering treatment. During the reaction process, PVP is used as the capping reagent for preventing the agglomeration of Ag NPs, and the influence of the mass ratio of AgNO3 and PVP to the size distribution of Ag NPs is investigated. The results of electronic properties reveal that the conductivity of printed patterns is highly dependent on the size distribution of as-obtained Ag NPs. Among all the samples, the optimal conductivity is obtained when the mass ratio of AgNO3 and PVP is 1:0.4. Subsequently, the sintering time and temperature are further investigated for obtaining the best conductivity; the optimal electrical resistivity value of 3.83 μΩ · cm is achieved at 160 °C for 75 min, which is close to the resistivity value of the bulk silver (1.58 μΩ · cm). Significantly, there are many potential advantages in printed electronics applications because of the as-synthesized Ag NPs with a low sintering temperature and low electrical resistivity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preparation of solid silver nanoparticles for inkjet printed flexible electronics with high conductivity.

Silver nanoparticles (NPs) which could be kept in solid form and were easily stored without degeneration or oxidation at room temperature for a long period of time were synthesized by a simple and environmentally friendly wet chemistry method in an aqueous phase. Highly stable dispersions of aqueous silver NP inks, sintered at room temperature, for printing highly conductive tracks (∼8.0 μΩ cm)...

متن کامل

The Inkjet Printing of Reducible AgNPs amperometric glucose biosensor Electrodes

The enzymes immobilization of the is crucially effective factor in biosensor preparation. Metal nanoparticles potentially able to immobilize the enzymes according to unique properties including large surface-to-volume ratio, high surface reaction activity, high catalytic efficiency, and strong adsorption ability. A novel and highly sensitive amperometric glucose biosensor was obtained by using ...

متن کامل

Nanoparticle chemisorption printing technique for conductive silver patterning with submicron resolution.

Silver nanocolloid, a dense suspension of ligand-encapsulated silver nanoparticles, is an important material for printing-based device production technologies. However, printed conductive patterns of sufficiently high quality and resolution for industrial products have not yet been achieved, as the use of conventional printing techniques is severely limiting. Here we report a printing technique...

متن کامل

INKJET DEPOSITED SILVER NANOPARTICLE ELECTRODES

Silver nanoparticles are being given considerable attention because of their interesting properties and potential applications. One such exploitable use is as the major constituent of conductive inks and pastes used for printing various electronic components. This paper presents a novel direct-writing process for fabrication of the first deposited silver nanoparticles (AgNPs) (50-200nm) elec...

متن کامل

Conductive Polythiophene Nanoparticles Deposition on Transparent PET Substrates: Effect of Modification with Hybrid Organic-inorganic Coating (RESEARCH NOTE)

In this work, Poly(ethyleneterephthalate) (PET) substrate was treated using KOH solution and was modified using hybrid O-I coating containing PCL )polycaprolactone( as organic phase and TEOS )tetraethoxysilane( as inorganic phase. The coating was prepared through a sol-gel process and applied on the surface by dip coater. Then, electrically conducting polythiophene (PTh) nanoparticles were depo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016